Modelling Interaction of Sentence Pair with Coupled-LSTMs

نویسندگان

  • Pengfei Liu
  • Xipeng Qiu
  • Yaqian Zhou
  • Jifan Chen
  • Xuanjing Huang
چکیده

Recently, there is rising interest in modelling the interactions of two sentences with deep neural networks. However, most of the existing methods encode two sequences with separate encoders, in which a sentence is encoded with little or no information from the other sentence. In this paper, we propose a deep architecture to model the strong interaction of sentence pair with two coupled-LSTMs. Specifically, we introduce two coupled ways to model the interdependences of two LSTMs, coupling the local contextualized interactions of two sentences. We then aggregate these interactions and use a dynamic pooling to select the most informative features. Experiments on two very large datasets demonstrate the efficacy of our proposed architectures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Fusion LSTMs for Text Semantic Matching

Recently, there is rising interest in modelling the interactions of text pair with deep neural networks. In this paper, we propose a model of deep fusion LSTMs (DF-LSTMs) to model the strong interaction of text pair in a recursive matching way. Specifically, DF-LSTMs consist of two interdependent LSTMs, each of which models a sequence under the influence of another. We also use external memory ...

متن کامل

COUPLED FIXED POINT THEOREMS FOR GENERALIZED Φ-MAPPINGS SATISFYING CONTRACTIVE CONDITION OF INTEGRAL TYPE ON CONE METRIC SPACES

In this paper, we unify, extend and generalize some results on coupled fixed point theorems of generalized φ- mappings with some applications to fixed points of integral type mappings in cone metric spaces.  

متن کامل

SPOT PATTERNS IN GRAY SCOTT MODEL WITH APPLICATION TO EPIDEMIC CONTROL

In this work, we analyse a pair of two-dimensional coupled reaction-diusion equations known as the Gray-Scott model, in which spot patterns have been observed. We focus on stationary patterns, and begin by deriving the asymptotic scaling of the parameters and variables necessary for the analysis of these patterns. A complete bifurcation study of these solutions is presented. The main mathematic...

متن کامل

GENERAL SYNCHRONIZATION OF COUPLED PAIR OF CHAOTIC ONE-DIMENSIONAL GAUSSIAN MAPS

In this paper we review some recent ideas of synchronization theory. We apply this theory to study the different synchronization aspects of uni-directionally coupled pair of chaotic one-dimensional Gaussian maps.

متن کامل

Ensemble Neural Relation Extraction with Adaptive Boosting

Relation extraction has been widely studied to extract new relational facts from open corpus. Previous relation extraction methods are faced with the problem of wrong labels and noisy data, which substantially decrease the performance of the model. In this paper, we propose an ensemble neural network model Adaptive Boosting LSTMs with Attention, to more effectively perform relation extraction. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016